Search results for "Newton fractal"

showing 2 items of 2 documents

A regularized Newton method for locating thin tubular conductivity inhomogeneities

2011

We consider the inverse problem of determining the position and shape of a thin tubular object, such as for instance a wire, a thin channel or a curve-like crack, embedded in some three-dimensional homogeneous body from a single measurement of electrostatic currents and potentials on the boundary of the body. Using an asymptotic model describing perturbations of electrostatic potentials caused by such thin objects, we reformulate the inverse problem as a nonlinear operator equation. We establish Frechet differentiability of the corresponding operator, compute its Frechet derivative and set up a regularized Newton scheme to solve the inverse problem numerically. We discuss our implementation…

Applied MathematicsOperator (physics)Mathematical analysisFréchet derivativeBoundary (topology)Inverse problemComputer Science ApplicationsTheoretical Computer Sciencesymbols.namesakeNewton fractalPosition (vector)Signal ProcessingsymbolsDifferentiable functionNewton's methodMathematical PhysicsMathematicsInverse Problems
researchProduct

The convergence of the perturbed Newton method and its application for ill-conditioned problems

2011

Abstract Iterative methods, such as Newton’s, behave poorly when solving ill-conditioned problems: they become slow (first order), and decrease their accuracy. In this paper we analyze deeply and widely the convergence of a modified Newton method, which we call perturbed Newton, in order to overcome the usual disadvantages Newton’s one presents. The basic point of this method is the dependence of a parameter affording a degree of freedom that introduces regularization. Choices for that parameter are proposed. The theoretical analysis will be illustrated through examples.

Mathematical optimizationIterative methodApplied MathematicsSteffensen's methodNewton's method in optimizationLocal convergenceComputational Mathematicssymbols.namesakeNonlinear systemNewton fractalSecant methodsymbolsNewton's methodMathematicsApplied Mathematics and Computation
researchProduct